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Abstract. Collaborative document editing has

grown popularity over the last decades. This has

been driven by the ease of use of online platforms

compared to work�ows requiring participants to

mail versions back and forth and reconcile changes.

However, common tools such as Google Docs or

Microsoft's O�ce 365 come with an impact to their

users privacy. The server hosting these services can

access all stored documents and actively modify or

passively read their content.

In this paper, we present the cryptographic de-

sign of CryptPad, a web-based, end-to-end en-

crypted, collaborative real-time editor for a variety

of document types. We show how we use cryptog-

raphy to protect against attacks in an honest-but-

curious threat model. We present multiple dedi-

cated schemes that use a mix of asymmetric and

symmetric encryption, as well as signing, to allow

�ne-graded access control, private messaging, and

team collaboration. Despite the common percep-

tion that cryptography is too complicated for the

average user, CryptPad remains simple to use and

has a large and growing user base.

1 Introduction

CryptPad is an end-to-end encrypted real-time
collaboration suite that is used by hundreds of
thousands of people per month. It is accessible
through a web interface which ensures that all
data is encrypted in the browser with no read-
able user data leaving the local device. Even
the service administrators can therefore not see

*contact@cryptpad.fr

the content of documents or user data.

Since CryptPad's initial release in 2014, the
feature set has grown from a simple editor to a
full-blown set of multiple applications includ-
ing forms, spreadsheets, presentation slides,
kanban boards, and whiteboards. Nowadays,
CryptPad also features additional collabora-
tion utilities such as calendars, teams and sim-
ple chats.

CryptPad is an open source project with
both client and server code available and li-
censed under the GNU A�ero General Pub-
lic License version 3.0 (AGPL).1 This means
that anyone with the ability to do so is free
to use, host, and modify the software as long
as any modi�cations are made available to their
users under the same terms. CryptPad is devel-
oped by XWiki SAS, a company based in Paris,
France that has been making open source soft-
ware since 2004. The development has been
supported since 2015 by French and European
research funding bodies such as BPI France,
NLNet Foundation, NGI Trust, and Mozilla
Open Source Support.

Due to the limited information which is ex-
posed to operators of CryptPad servers, we
cannot know exactly which type of users rely
on CryptPad and for what kind of activity
it is used. As several blog posts suggest,
among CryptPad's users are journalists [1],
people working in the health sector [2], and ac-
tivists [3], [4]. There is also a public instance

1Source code: https://github.com/xwiki-labs/

cryptpad
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hosted by Germany's Pirate Party [5]. This
instance was recently seized by police as a con-
sequence of the publication of sensitive mate-
rial [3]. Altogether, this shows that higher-risk
users rely on the security established by Crypt-
Pad. The users especially do not want to trust
the server as it might be corrupt or seized due
to legal enforcement.

In previous work [6], [7] we described Crypt-
Pad's general architecture and user interface
and compared it to other collaboration tools.
In this paper, however, we focus on the cryp-
tographic design that is used to secure user-
generated information such as documents and
messages. We show the desired security prop-
erties and how we establish them cryptograph-
ically. We update this paper to align it with
CryptPad's newest improvements. This paper
here re�ects 5.1.0 (c.f. the changelog in Ap-
pendix A).

The remainder of this paper is structured
as follows: Section 2 summarizes CryptPad's
underlying threat model. We then explain
the communication between the server and the
client in Section 3. After introducing the no-
tation in Section 4, we present in Section 5 the
encryption of pads as the core functionality of
CryptPad. We next show in Section 6 how
the login mechanism makes the documents eas-
ily accessible across multiple devices, but keeps
them secure. Section 7 explains the establish-
ment of secure communication between di�er-
ent users. Finally, Section 8 shows how we en-
able communication and access control within
a team.

2 Threat Model

We describe adversarial capabilities and goals
in detail in the threat model published on our
website. To summarize, we consider an honest-
but-curious server that has additional active
network capabilities. The server has therefore

access to encrypted data, but cannot actively
alter, delete or copy data.

We address most of the resulting threats di-
rectly in the platform's cryptographic design.
However, to defend against Machine-in-the-
middle (MITM), and partly against imperson-
ation attacks (server authentication) we rely on
the security guarantees given by the Transport
Layer Security (TLS) protocol.

3 Client-Server Communica-

tion

In this section, we show how we use the Net-
Flux protocol [8] to enable communication be-
tween web clients and the server. We discuss
the usage of TLS that helps to defend against
MITM and impersonation.

Each CryptPad instance makes use of a cen-
tral server: while not being able to read any
content, the server still acts as an intermediary
between di�erent clients. This is not only to
forward the messages, but also to store them
and to guarantee a highly available persistence
layer that would not be possible in a purely
peer-to-peer solution.

Communication between the client and the
server is mostly done using a Websocket con-
nection based on the NetFlux protocol. Ex-
ceptions are static �les (images, videos, PDF,
etc.) that are stored in an encrypted format
and are retrieved by users with XMLHttpRe-
quests (XHRs).

With the NetFlux protocol, users can join
channels and send messages to them. All users
subscribed to a channel will then receive the
messages.

Each document is represented on the server
by a channel with a unique 32-character hex-
adecimal identi�er called chanID. The chanID
associated with a document is derived from its
URL, so that users knowing the URL can sub-
scribe to the channel.
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While a channel provides a way to communi-
cate messages or changes to a document, chan-
nels do not provide con�dentiality or authentic-
ity. We therefore use TLS to encrypt the mes-
sages between the server and the client. This
allows to authenticate the server and therefore
rules out MITM attacks. It further restricts
any network adversary from accessing the en-
crypted content.

However, TLS on its own is not enough as
the encryption is only between the server and
the client, but not between two clients. TLS
can moreover not prevent clients from subscrib-
ing to channels they should not have access
to. To prevent against this, we make use of
dedicated encryption schemes hand tailored to
CryptPad. We present these schemes in the
Sections 5 to 8.

4 Notation

In this section we introduce the used libraries
and notation.

For the key derivation function (KDF) we
use scrypt [9]. We de�ne KDF(pwd, salt) to be
the scrypt algorithm using the password pwd
and salt as an input.

All other cryptographic operations are done
using the TweetNaCl.js library [10], [11]. We
also use TweetNaCl.js to sample random bytes,
however, TweetNaCl.js itself relies on the
browsers' sources of secure randomness.

Symmetric encryption is authenticated and
uses XSalsa20-Poly1305. We let SymEnc(K,m)
be the symmetric encryption of the message m
under the secret key K.

Public-key encryption is authenticated and
uses x25519-XSalsa20-Poly1305. We let
KGenE(seed) be the derivation of an asymmet-
ric key pair (PK,SK) from seed. Here, PK de-
notes the public key and SK denotes the private
key. We use Nacl.box(m,N,PKB,SKA) to ex-
plicitly refer to the asymmetric encryption of a

message m under a nonce N , Bob's public key
PKB, and Alice' private key SKA.

Likewise, we use Ed25519 for signatures and
let KGenS(seed) denote the derivation of an
asymmetric signing key pair (PK, SK) from
seed. The signing of a message m under a pri-
vate key PK is written as Sign(m,PK).

Finally, we use SHA-512 for hashes and de-
note the hash of a string x as H(x). To mark a
splitting of a string x in diagrams, we annotate
the arrows with i..j to denote all bytes from the
i-th to the j-th (both included). We further let
x||y be the concatenation of two strings x and
y. In diagrams, multiple arrows pointing to the
same box (e.g., a hash) may implicitly denote
string concatenation.

5 Documents

In this section, we present documents as one
of the core concepts of CryptPad. Historically
implemented as encrypted collaboratively ed-
itable text documents, the concept of docu-
ments has expanded. Nowadays, other types
of data such as folders, polls and calendars are
internally represented as documents on Crypt-
Pad.

We �rst show the basic idea of how we use
encryption to control access rights. Next, we
present the consensus algorithm that ensures
that changes to a document are propagated to
the users in nearly real-time. We then explain
in Section 5.2 the key derivation in multiple
di�erent scenarios that enables end-to-end en-
cryption, prevents user abuse attacks, and is
easy to use. We further explain CryptPad's
ownership model in Section 5.3 to achieve. Fi-
nally, we discuss in Section 5.4 how we build
self-destructing documents depending on either
the time or on the opening of the sharing link.
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5.1 Consensus Protocol

The main di�culty for near real-time collabo-
ration is in reconciling the fact that it is impos-
sible for two events separated by some distance
to interact instantaneously. We therefore intro-
duce in this section a protocol that can handle
simultaneous edits of documents.

CryptPad uses its own protocol based on
Operational Transformation (OT) [12] and di-
rected acyclic graphs. The basic idea is to gen-
erate patches from one state to the next and
to collectively decide the order in which the
patches need to be applied.

The user stores a local copy known as the
authoritative document which is the last known
state of the document that is agreed upon by
all the users. The authoritative document can
only be changed as a result of an incoming
patch from the server.

The di�erence between modi�ed document
and the authoritative document is represented
by a patch known as the uncommitted work.
A patch further references the SHA-256 hash
of the authoritative document. The patches
therefore build a directed acyclic graph where
we call the longest path to be the chain.

As the user adds and removes data, this un-
committed work grows. Periodically the user
transmits the uncommitted work in the form
of patches to the server. The server will then
broadcast these patches to all users listening to
the corresponding NetFlux channel. The user
can afterwards update the authoritative docu-
ment and reset the uncommitted work.

When receiving a patch from the server, the
user �rst examines the validity and discards
the patch if the cryptographic integrity and
authenticity checks do not pass. If the patch
references the current authoritative document,
the user applies the patch to the authorita-
tive document and transforms the uncommit-
ted work by that patch.

Otherwise, the user stores it in case that

other intermediate patches have not yet been
received. It could be that a patch references
a previous state of the document which is not
the authoritative document. The user stores
the patch in this case as it might be part of a
fork of the chain which proves longer than the
chain which the engine currently is aware of.

In the event that a fork of the chain becomes
longer than the currently accepted chain, a �re-
organization� will occur which will cause the
authoritative document to be rolled back to a
previous state and then rolled forward along
the newly accepted chain. During reorganiza-
tion, users will also revert their own committed
work and re-add it to their uncommitted work.
Con�icts are resolved with a dedicated scheme
that depends on the type of changes, e.g., dele-
tions have precedence over replacements. It
might therefore be the case that some changes
are lost during con�ict resolution. However,
due to the short period between two consecu-
tive patches and the fast conversion of chains,
this is not a problem in practice.

A special type of patch, known as a check-

point, always removes and re-adds all con-
tent to the document. The server can detect
checkpoint patches because they are speci�-
cally marked on the wire. In order to im-
prove performance of new users joining the doc-
ument and �syncing� the chain, the server sends
only the second most recent checkpoint and all
patches newer than that.

5.2 Encryption

In this section, we present the encryption
scheme for documents. We �rst show how we
use symmetric encryption of messages and then
how we derive the keys for di�erent types of
documents: encrypted blobs (Section 5.2.1),
editable documents (Section 5.2.2), and forms
(Section 5.2.3).

For every document, we want to distinguish
between at least two access rights: reading and
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writing. To enforce these access rights cryp-
tographically, we use symmetric encryption to
restrict read access and asymmetric signatures
to restrict write access.

More speci�cally: in order to write data m
to a document, a user must have a symmetric
encryption key K and a signing key SK that
is part of an asymmetric key pair (PK, SK).
The user �rst symmetrically encrypts m to a
ciphertext c using K. This ciphertext e�ec-
tively hides its underlying content from anyone
not having access to K (including the server).
Then, to prove the write access right, c is fur-
ther asymmetrically signed using SK resulting
in a signature sig. Finally, the signed cipher-
text (c, sig) is sent over a NetFlux channel to
the server which checks the signature. If this
check succeeds, then the server stores the mes-
sage and forwards it to all users listening to the
same channel. Otherwise, the message is nei-
ther stored nor forwarded. When users receive
a ciphertext, they can decrypt it using SK. A
user who does not have SK, but only K and PK
may read new incoming ciphertexts, but cannot
draft new ones. The separation of encrypting
and signing further allows outsourcing the val-
idation of (c, sig) to the server as it can have
PK, but not K.

To collaboratively work on a document, users
must share the keys with their collaborators.
Our key derivation scheme is speci�cally de-
signed to make the sharing of the keys easy. We
therefore �rst outline how keys can be shared
and then show how we actually derive the keys
to enable this simple sharing mechanism for dif-
ferent use cases, i.e., for encrypted blobs, ed-
itable documents, and forms.

There are two ways to share a document and
its keys: via CryptPad's internal communica-
tion mechanisms (c.f Section 7) or via sharing
a URL. For the latter, we use the fact that the
URL part after # is never sent to the server [13].
Users can therefore safely put the information

fileKeyStr pwd

H(·)

KchanID

0..23 24..55

Figure 1: Key derivation for encrypted blobs

required to derive keys in a URL after #.2

Since users may opt for an additional pass-
word required to have access to the document,
we do not directly put the keys into the URL,
but derive them from a seed concatenated to
a (possibly empty) password. This feature is
especially useful in the case that there is no
con�dential channel to securely share the link:
If there are two distinct uncon�dential chan-
nels (e.g., email and SMS), the users can share
the URL over one channel and the password
over the other channel. While not resulting in
a truly secure sharing, the probability for an
adversary to intercept both components is re-
duced.

5.2.1 Encrypted Blobs

Encrypted blobs such as uploaded PDFs, im-
ages or videos are encrypted once and stored
on the server. There is no need for more �ne-
grained access control as editing the static doc-
ument is by de�nition not possible. It is there-
fore enough to only derive a symmetric key K,
but not a signing key pair. The key derivation
is depicted in Fig. 1.

We �rst concatenate the (possibly empty)
password pwd with the seed �leKeyStr and hash
it. We then split the hash into 24 bytes for the
chanID and 32 bytes for the K.

2An example of such a URL looks as follows: https:

//cryptpad.fr/pad/#/2/pad/view/GcNjAWmK6YDB3EO

2IipRZ0fUe89j43Ryqeb4fjkjehE/
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editKeyStr pwd

H(·)

KGen(·) H(·)

SKPK viewKeyStr chanID K

32..630..31

32..63 0..15 16..47

Figure 2: Key derivation for editable docu-
ments

In case that the fileKeyStr is empty, it is ini-
tialized to 18 random bytes and returned as
an additional output. This will allow anyone
in its possession and knowing pwd (if it exists)
to derive the same chanID and K and to thus
download and decrypt the �le.

5.2.2 Editable Documents

Most of the editable documents are only mod-
i�able by selected users. These users are able
to not only decrypt the document, but also to
sign patches and send them to the server. We
therefore need to derive both, a symmetric en-
cryption key K and a signing key pair (PK, SK).

To create a new document with all the above
capabilities, we derive the keys as depicted in
Fig. 2. The inputs are again a (possibly empty)
password pwd and a seed editKeyStr. In case
that the latter is empty, we initialize it with
18 random bytes and return it as an additional
output. We then hash the concatenated pwd
and editKeyStr and split the resulting hash into
two parts. From the �rst part we generate the
signing key pair (PK,SK). The second part of
the hash forms the viewKeyStr and is fed to-
gether with pwd into another hash from which
we derive the chanID and the symmetric key K.

Users may want to publish a document (e.g.,

a blog post) so that others can only read them,
but not change them. To achieve this, users
can publish the viewKeyStr since it allows � to-
gether with the knowledge of pwd� to derive
the symmetric key K as well as the chanID.
Moreover, viewKeyStr is independent of the in-
put bits to KGen(·) that produced (PK, SK).
It is therefore not possible to deduce the sign-
ing key SK required to edit the document from
viewKeyStr.

5.2.3 Forms

There are more complex use cases which re-
quire even more �ne-grained access control and
therefore also more encryption and signing keys
to di�erentiate the access rights. One such ex-
ample is a form having multiple roles: the au-
thors should be able to write, view and answer
the questions, as well as to view all responses
to the form. The participants should be able to
view the questions and to answer them. How-
ever, participants should not be able to read
the responses. Furthermore, there are audi-

tors with the capability to view all responses,
but without the capability to answer the form
themselves. The auditor role can be used to in-
corporate answers from a privileged set of form
respondents in real time.3

This illustrates the need for two di�erent sets
of keys. First, we need a symmetric key K1

that allows to encrypt/decrypt the questions,
as well as a key pair (PK1, SK1) to change the
questions. Second, we need an asymmetric
key pair (PKE ,SKE) to encrypt/decrypt the
answers and a signing key pair (PK2, SK2) to
prove the answer capability. We distribute the
keys as follows:

� We derive all keys from a seed editKeyStr
and give this seed to the authors so that
they can perform any action they want.

3You can, e.g., publish results of an ongoing vote in

real time.
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They will encrypt the questions with K1

and sign them with (PK1,SK1) to prove
write access. Furthermore, they derive
a public encryption key pair (PKE ,SKE)
used to encrypt/decrypt form replies. Fi-
nally, they use the signing key pair
(PK2, SK2) to prove/verify the ability to
reply.

� The participants get a seed viewKeyStr
that allows them to derive K1 and thus
to read the questions. They further get
(PK1, SK1) to sign their answers and PKE

to encrypt their answers. However, they
cannot decrypt the answers of others.

� Finally, the auditors get viewKeyStr to de-
rive K1 and thus to read the questions;
(PKE , SKE) to decrypt the replies; and
PK1 to verify their signature.

The key derivation is depicted in Fig. 3 and
extends the derivation of editable documents.
The asymmetric signing key pair (PK1,SK1),
respectively K, is derived in the same way
as (PK,SK), respectively K, in editable doc-
uments; and viewKeyStr and chanID are also
identical to their counterparts in editable doc-
uments.

However, we derive some more keys: We
hash SK1 to generate (PKE ,SKE) used for
asymmetric encryption of replies. We further
use the bytes 32 to 63 of the hash of viewKeyStr
to derive signing key pair (PK2,SK2).

4 This
key derivation scheme ensures that the posses-
sion of viewKeyStr does not allow deducing SK1

or SKE . Also, it is not possible to deduce SK1

from SKE .

4There is a bit overlap between K and the input to

KGenS(·). This overlapping poses no e�ective threat as

there are still 16 independent bytes. However, we will

�x this in a future version.

5.3 Ownership

CryptPad has a concept of document owner-
ship to restrict some actions such as docu-
ment deletion and password enabling to own-

ers. Ownership is not limited to single per-
sons, but can be held by a team, or it can be
shared, i.e., an existing owner can add another.
We implement ownership by relying on pub-
lic keys, the server can therefore not associate
usernames to documents.

When creating a document (or uploading
an encrypted blob), users also submit their
long term public signing key to mark them-
selves as owners. The server then associates
the public key to the document. To perform an
ownership-restricted action to a document, the
owners send a request signed with their public
key to the server. If the signature is correct
and the public key is associated with the docu-
ment match, the server performs the requested
action to the document.

5.4 Self-destructing Documents

CryptPad includes a feature to create self-
destructing documents that will automatically
be deleted. This feature therefore helps to en-
sure that con�dential data will not be leaked
and that sensitive data is not accessible forever.

An exemplary use case is password sharing
where the password owner shares it via a URL
sent to a peer. Fearing that the peer's lap-
top might be accessed by unauthorized third-
parties at a later point in time, the password
owner wants to ensure that the document can
only be opened once and will be destroyed au-
tomatically afterwards.

The self-destruction can be based on two
mechanisms: either on an expiration time or
on the event of opening a shared link. For the
�rst mechanism, the expiration date has to be
set during the document creation and cannot
be changed afterwards. The expiration date
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editKeyStr pwd

H(·)

KGenS(·)

H(·)

H(·)

32..63

KGenE(·) KGenS(·)

SKEPKE viewKeyStr chanID K PK2 SK2

32..63
0..31

0..15 16..47

0..31

32..63

SK1PK1

Figure 3: Key derivation for a form

is written to the document's metadata which
can be read by the server. When fetching the
document, the server �rst checks whether the
expiration time has elapsed. If this is the case,
the server deletes the document beforehand to
prevent the users from fetching it. In the case
where the expiration time elapsed while the
document is opened by a user, it will be nev-
ertheless deleted and the user will be discon-
nected. However, the user is still able to read
the document until closing the corresponding
browser tab.

The second mechanism, which we call �view-
once-and-self-destruct�, changes the way a
shared link is created and opened. To create a
view-once-and-self-destruct link, the document
owner creates an ephemeral signing key pair
and adds the private signing key to the list
of owners of the document. This signing key
is then together with a label �view-once� ap-
pended to the view-only link and sent to the
receiver.

When the receiver opens the link, the re-
ceiver �rst fetches the content of the doc-
ument. Then, immediately afterwards, the
receiver sends the deletion command to the
server. To prove the deletion capability, the

receiver signs the command with the attached
ephemeral signing key.5

6 CryptDrive

In this section, we introduce CryptDrive which
provides users an interface to store and manage
all their documents. We further allow the users
to store their long term keys used to, e.g., en-
crypt messages (c.f. Section 7) or to prove own-
ership of a document (c.f. Section 6.2). How-
ever, all this information is encrypted and thus
unreadable for the server. We �rst show in Sec-
tion 6.1 the registration and login mechanism
during which the server sees neither the user-
name nor the password. Second, we show in
Section 6.2 that the server is nevertheless able
to do storage management and, e.g., impose
storage limits.

6.1 Registration and Login

On a high level, we use the username and the
password to generate login keys with which we

5We assume the receiver to be honest and to cor-

rectly issue the deletion command. This assumption is

implicit in any such scheme, as a malicious user could

always take screenshots and thus circumvent deletion.
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pwd username||saltI

KDF(·, ·)

KGenS(·)

PKL SKL KL

192 random bytes

KGenE(·) KGenS(·)

PKE SKE PKS SKS

store in encrypted document
get read/write URL

editKeyStr

SymEnc(·, ·)

PKL||encrypted blob

66..97 130..161

34..65 98..129

Figure 4: Derivation and storage of the login
and long term keys.

access an encrypted �le containing the user's
long term keys as well as pointers to the user's
documents and folders. The mechanism is de-
picted in Fig. 4 and is explained below.

During registration and login, we locally
derive login keys using the KDF scrypt [9]
which is designed to be memory expensive and
therefore renders brute force attacks imprac-
tical as they are not feasible in a reasonable
amount of time. More speci�cally, we de-
rive from the password a symmetric encryp-
tion key KL and an asymmetric signing key
pair (PKL, SKL). We let the salt for this key
derivation be the concatenation of the user-
name and the per-instance string saltI. The us-
age of a per-instance salt prevents the attacker
from precomputing rainbow tables for all in-
stances and cracking passwords easily after a
potential database compromise. Note that the

selection of the used bytes (see Fig. 4) is not
continuous due to legacy reasons.
A password change will result in a change

of the login keys. Since we want some keys,
such as the user's long term signing keys, to be
invariant, we cannot rely on the login key to
derive all further keys. Instead, we randomly
generate long term encryption and signing keys
(PKE ,SKE) and (PKS ,SKS) during registra-
tion to store them in an encrypted data struc-
ture. This data structure is the same that we
use for encrypting documents (c.f. Section 5.2),
hence we refer to it as an encrypted �docu-
ment�. We then read/write URL providing ac-
cess to this document using the login key KL

and store them in a symmetrically encrypted
blob on the server. We further add the veri�-
cation key PKL to the metadata of this blob to
mark the ownership to the server.
To log in, the user derives the exact same

keys KL, (PKL, SKL) and submits then the pub-
lic key to the server. Since the user has de-
rived the symmetric encryption key KL, the
user can decrypt the blob and obtain the read-
write URL of the encrypted document contain-
ing the long term keys.
This layer of indirection allows changing the

password since we only need to re-encrypt the
access to the encrypted document under new
login keys K′

L and (PK′
L, SK

′
L). To change the

password, the user �rst signs the public key
PKL with SKL to prove the ownership. The
user then sends this signature together with the
re-encrypted blob under K′

L and the attached
PK′

L to the server. Next, the server uses PKL

stored in the metadata to verify the correctness
of the signature. If the veri�cation succeeds,
the server can safely replace the encrypted blob
and store PK′

L as the new veri�cation key.
To let the user access all their folders and

documents, we store pointers to these in the
same encrypted document that contains the
long term keys. The access to the user's fold-
ers and documents will therefore also be safely
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migrated during a password change.

Note that this login mechanism does not re-
quire the server to store the username, neither
in plaintext nor in any hashed form. The server
can therefore not check whether a given user-
name has an account or not. Another conse-
quence is that multiple users may register with
the same username � as long as their passwords
are di�erent.

6.2 Storage Management

So far, we have shown how the data owned by
or related to a user is encrypted. Nevertheless,
we want the server to be able to manage the
data storage.

First, the server should be able to impose
storage limits so that users cannot allocate
more storage than they are supposed to do. We
therefore create a list of pins for each registered
user where each list is identi�ed by the user's
long term public signing key. Every pin con-
tains a document/blob identi�er, a list of own-
ers (represented with their public keys), and
a creation date. The list of pins of a speci�c
user therefore contains all the documents (co-
)owned by this user. To compute the disk usage
of a speci�c user, the server simply sums up the
size of all documents and blobs contained in the
pins. If the maximal storage quota for a user is
reached, then the server hinders the user from
pinning newly created documents and blobs.

Second, we also want the server to be able to
identify unused documents created by guests.
This allows the server to delete documents
which have not been opened during certain
time period and to thus free disk space. We
therefore add to each (encrypted) �le a meta-
data �le not only an owner list (c.f. Section 5.3)
but also the creation time. When the server
periodically iterates over all documents, it can
�rst check whether the document is owned by
a CryptDrive user. If this is not the case, then
the server can delete documents that have not

been accessed during, e.g., the last 3 months.

7 Messaging

In this section we present CryptPad's own end-
to-end encrypted messaging system that allows
users to exchange arbitrary messages and meta-
data with other users. The messaging system
is further used for, e.g., instance support, team
messaging (c.f. Section 8) and forms. An im-
portant property of the used encryption scheme
is anonymity: A user eavesdropping on another
user's mailbox can not infer the sender of the
message.
The basic block of the message encryp-

tion is to use public-key authenticated encryp-
tion with Nacl.box(·) which internally derives
a shared key between the receiver's and the
sender's keys.
We build our encryption ASymEnc(·) on this

by encrypting a plaintext under the sender's
public/private keys (PKA,SKA) and the re-
ceiver's public key PKB as follows:

ASymEnc(PKA, SKA,PKB,m)

N ←$ {0, 1}192

c← Nacl.box(m,N,PKB, SKA)

return N ||c||PKA

The 24-bytes-sized nonce N is sampled uni-
formly at random and is prepended to the au-
thenticated ciphertext c. The sender's public
key PKA is further appended to indicate the
sender's identity to the receiver.
The receiver can then split the received mes-

sage into N , c, and PKA to decrypt it us-
ing Nacl.box.open(c,N,PKA,SKB). In case
that the sender wants to decrypt this mes-
sage, the server must use (PKB,SKA) instead
of (PKA,SKB), since the sender does generally
not have access to SKB.
However, we do not directly encrypt mes-

sages using ASymEnc(·) as this would leak the
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if SKB,S

else

Figure 5: Sealing of a message m to return a
ciphertext c.

sender of the message. Instead, we apply a sec-
ond layer of encryption using ephemeral keys
which are freshly generated for each message
and thus are not linkable to the sender. Lastly,
we may additionally sign the double encrypted
messages using a signing key to prove write ac-
cess.

An exemplary use case for this is the sign-
ing of a form answer: the users will receive
it from the author to prove that they actu-
ally are allowed to send messages answering the
form. For other cases the signing key may be
obtained through the accounts' pro�le pages,
or as a point of contact in documents.

This sophisticated sealing scheme is depicted
in Fig. 5. It takes as an input a message m,
the long term encryption key pair (PKA, SKA),
the ephemeral keys (PKE , SKE), and � op-
tionally � the signing key SKB,S belonging
to the receiver's signing/veri�cation key pair
(PKB,S , SKB,S). We �rst encrypt using the
combination of the sender's and the receiver's

keys. We then apply the second layer encryp-
tion using ephemeral keys (PKE ,SKE). Fi-
nally, we check whether a signing key SKA,S

was passed as input. If this is the case then we
additionally sign the ciphertext before return-
ing it. Otherwise, we just return the ciphertext
without signing it.
Every user shares its veri�cation key PKB,S

with the server such that the server can check
the signatures of incoming messages. There-
fore, the receiver does not have to check it. The
receiver, however, needs to decrypt the outer
layer using the private key SKB and the sup-
plied ephemeral key PKE . Then the receiver
can extract the sender's public key PKA and
use it together with the private key SKB to de-
crypt the inner layer.

8 Teams

In this section, we present CryptPad's team en-
cryption which is similar to the general messag-
ing encryption, but suitable for the use case
where we want to have �ne-grained control
over reading and writing access. We �rst show
in Section 8.1 how we derive the team's keys
and how we use them for message encryption
and the control of the team's drive. Next, we
present in Section 8.2 the di�erent roles and
permissions in team and how we enforce them.

8.1 Key derivation

We want that all users of a team can read mes-
sages, but not necessarily all of them to be able
to write to the mailbox. We therefore gener-
ate not only an encryption key pair, but also a
signing key pair which allows proving writing
capabilities.
The key generation for a team is depicted

in Fig. 6. We sample 18 Bytes uniformly at
random for seed and split it into two halves.
We hash the �rst half and build from this hash
the chanID and an encryption/decryption key

11
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Figure 6: Derivation of team keys

pair (PKT ,SKT ). The second half forms the
input to KGenS(·) which generates a signing
key pair (PKT,S ,SKT,S).

To send a message to a team, the user en-
crypts it with the same mechanism as described
in Section 7. However, the user must set the
team's PKT as the public key of the receiver
and use the team's SKT,S as the signing key.

The public signing key is further used to con-
trol a team's drive which works the same way
as one of a single user. For example, we can
use the signing key to pin a document, i.e.,
to indicate to the server that a speci�c docu-
ment is owned. In the perspective of the server,
the public key of this pin is, however, undistin-
guishable from the one of a single user. Based
on an o�ine view of the database (i.e., after a
seizure of law enforcement), the server can thus
neither know which entities are teams, nor can
the server match users to teams.

8.2 Roles and Permissions

As shown in Table 1, there are four di�erent
roles in a team: viewers, members, admins, and
owners. The permissions are the following:

View: read-only access to folders and docu-
ments.

Edit: create, modify, and delete folders and
documents.

Table 1: Di�erent roles and their permissions

Role View Edit
Manage
Members

Manage
Team

Viewer ✓
Member ✓ ✓
Admin ✓ ✓ ✓
Owner ✓ ✓ ✓ ✓

Manage users: invite and revoke users,
change user roles up to admin.

Manage team: change team name and
avatar, add or remove owners, change
team subscription, delete team.

The number of permissions is strictly increas-
ing, i.e., a role inherits all access rights from a
weaker one, but has one additional permission.

All users keep a local copy of their teams in-
cluding their rosters. To manage members and
the team itself, admins (respectively owners)
send the corresponding control message to all
users of the team. They then check the authen-
ticity of the message and whether the sender
has su�cient rights to perform the desired ac-
tion. If this is the case, then they update their
local view of the team.

In order to, e.g., add a new document to the
team's drive, the user sends the viewing keys to
the viewers, and the editing keys to the teams'
members, admins, and owners.

9 Conclusion

In this paper, we have presented the crypto-
graphic design of CryptPad, a web-based, end-
to-end encrypted, collaborative real-time edi-
tor for a variety of documents. We have shown
realistic security threats for people with sen-
sitive data and how we address them. We
have explained how we use cryptography to en-
able various end-to-end encrypted applications,
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such as documents, messaging and team com-
munication.
Since its initial release 2015, CryptPad's user

base has steadily grown. This shows, that
the cryptographic design choices are also well-
received by the platform's users. All in all,
CryptPad has proved to be a long-lasting, sus-
tainable open source project striving privacy-
focused collaboration to the next level.
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A Changelog

We keep this white paper up-to-date to re�ect
CryptPad's newest version.

1.1.0 Theo von Arx (2023-03-31) � Move
threat model to dedicated webpage

1.0.0 Theo von Arx, Aaron MacSween (2022-
11-29) � Initial white paper based on
CryptPad 5.1.0
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