Towards More Cryptographic Agility

Theo von Arx

March 30, 2023

Abstract

CryptPad currently uses hard coded algorithms for encrypting doc-
uments and messages. Changing such an algorithm requires the in-
troduction of a new ciphertext type and poses a major effort on the
development side.

While the currently used algorithms are still considered to be se-
cure, the wide-spoken threat of quantum cryptography potentially
endangers the security of CryptPad. Even tough there is no post-
quantum public key encryption scheme standardized by NIST, it is
proposed to already think ahead and plan the transition towards such
a scheme. We thus show the algorithms used in CryptPad and discuss
their safety against quantum computer attacks. In such a process it is
key to plan it with cryptographic agility in mind. We therefore outline
the path towards more easily swappable cryptographic algorithms in
CryptPad.

Contents

1 Introduction

2 Inventory of cryptographic primitives

3 Criteria for updating cryptography primitives
4 Strategies

41 Login Block oo
4.2 Documents oo
4.3 Messaging
44 Teams

S Ok W W

1 Introduction

The current architecture of CryptPad uses hard-coded cryptographic prim-
itives such as X25519-XSalsa20-Poly1305 or SHA-512 implemented in the
Tweet-NaCl library for JavaScript [1], [2]. While all the used primitives are
still considered to be secure and there are no known vulnerabilities, this
might change in the future.

This “fear” has become more accentuated with the increasing efforts on
quantum computing over the last decades. Quantum computers will be able
to solve problems that are hard for today’s computers. These problems in-
clude the integer factorization problem, the discrete logarithm problem, and
the elliptic-curve discrete logarithm. As a consequence, the currently used
primitives for asymmetric encryption and signatures would be broken and
would not provide much security anymore. This danger will not only arise
with the arrival of quantum computers, but already well before: companies
and governments could already collect encrypted data now and decrypt it
later.

Since 2016, the American National Institute of Standards and Technol-
ogy (NIST) is working on standardizing Post-Quantum Cryptography. Draft
standards are currently expected to be available until 2024. NIST recom-
mends organization and companies not to wait for the standard to be done,
but rather already start preparing the transition of the used primitives.

Consequently, CryptPad should already start today towards more cryp-
tographic agility. We want to be flexible in the choice of algorithms, key
sizes and other parameters. Having the possibility to more easily change the
cryptographic primitives will make the transition smooth, and ensures the
security of CryptPad in the long term.

2 Inventory of cryptographic primitives

Table 1 gives an overview over the used primitives. It further indicates
whether the algorithms are secure against quantum computers. This is not
the case for both, the asymmetric encryption and signatures algorithms in
use. The reason is that the security of these is based on the elliptic discrete
logarithm problem.

The most sensitive data in CryptPad is in the symmetrically encrypted
login block as it contains all the keys for the user’s drive, i.e., document keys,
private signing and encryption keys, as well as team keys. The next-most
sensitive data is then encrypted in the documents. While these are also sym-
metrically encrypted and thus secured in the long-term view, the problem
is the key transport distribution using asymmetric encryption. A quantum
attacker intercepting (or having recorded) and breaking asymmetrically en-
crypted messages can therefore also get access to documents.

Table 1: Overview over the used primitives in CryptPad.

Primitive Algorithm Usage Quantum
secure [3]

Symmetric encryption XSalsa20- Login Block, Docu- Yes
Poly1305 ments

Asymmetric encryption x25519- Messaging, symmetric No
XSalsa20- key distribution
Poly1305

Asymmetric signatures Ed25519 Proving write rights No
to documents and
mailboxes, answering
polls, access lists

Hashing SHA-512 Key derivations Yes

Key-derivation function Scrypt Derive login keys Yes

Vulnerable signatures on the other hand are less severe as a quantum
attacker breaking them long after it has actively modified poses only a small
threat (namely to blame the author(s) on having written harmful content).
However, once there exist real-world quantum computers, the signature al-
gorithm needs to be exchanged against one that is quantum secure.

3 Ciriteria for updating cryptography primitives

We propose to replace the currently used cryptography primitives (i.e., XSalsa20-
Poly1305, Ed25519 provided by Tweet-NaCl) when one or several of the
following criteria are met:

1. There is a severe security vulnerability that cannot be fixed.

2. The NIST standardizes a post-quantum cryptography schemes, and
this scheme has a stable and audited JavaScript implementation (or
binding).

3. Cryptography operations are a restricting bottleneck for performance,
and there are other, significantly faster libraries that provide at least
the same security level.

4 Strategies

4.1 Login Block

While protecting the most sensitive data, the encryption mechanism of the
login block is also comparably easier changeable than others. The ounly re-

quirement for cryptographic agility in the login block is that the username
and password are enough to decrypt the login block.

There are two algorithms involved in the login procedure: a key deriva-
tion function (KDF) and symmetrical encryption. We therefore propose how
to achieve more cryptographic agility for both of them.

Since there is no central entity knowing all the usernames and passwords,
the KDF cannot be replaced from one day to another. Depending on the
awareness of the users transition for all accounts will take months up to
years. In case of a detected vulnerability, it is therefore key to efficiently
reach all users via the internal platform, but also over email (e.g., for the
emails associated to premium accounts), social media, and the blog. If a
discovered vulnerability is so severe that passwords could be cracked, then
users should be forced to set a new password upon login.

Change of the KDF Since the server does not have any information
about the user, there is no easy way to know in advance which KDF should
be used. Hence, the best way is to proceed by trial and error: check if the
usage of KDF A leads to a decryptable login block. If not, proceed with
KDF B, then KDF C, etc.

Unfortunately, since KDFs are required to be slow, this will take quite
some time. After a successful login, the login block has to be automatically
re-encrypted using the latest KDF.

Change of the symmetric encryption algorithm By putting the used
algorithm into the plaintext metadata associated to a login block, we know
which algorithm to use. Similar to the above, a legacy algorithm should be
updated to the latest one after a successful login.

4.2 Documents

Re-encrypt under same seed One difficulty of changing the algorithms
involved in documents is that we want the URL still to be valid so that
users do not have to redistribute the access link. The strategy is therefore
to derive new keys for a new algorithm from the same seed.

To achieve this, we specify the algorithm along with the parameters and
the public verification key in the (unencrypted) metadata as well as in every
sent patch. Only document owners are allowed to change the algorithm
to avoid malicious user specifying broken algorithms. Also, there should
be consensus on what is the best (latest) algorithm to use to avoid clients
fighting about that. Currently, this can easily been done since the client
code is shipped by the server and can be updated almost simultaneously.

It is up to debate whether the chanID should also be changed after algo-
rithm change.

editKeyStr pwd
l

0..31 32..63
¥ Y
KGen(-) H(")
PK SK viewKeyStr chanlD K

Figure 1: Key derivation for editable documents

Re-encrypt under new seed There might be the case of a severe vulner-
ability in SHA-512 that violates the one-way property. Attackers could con-
sequently deduce the editKeyStr as well as the password from the viewKeyStr
or even from the encrypted block if there is a second vulnerability in the en-
cryption scheme (c.f. Fig. 1). In this case, document owner should re-encrypt
the document under a new algorithm using a new, randomly generated seed.
Since this involves broken links, old links should inform users that the content
was changed and that they need to request the new access link.

About the seed length When planning to re-use the seed for different
encryption schemes, it should be long enough to provide good entropy for
future usages. While we currently use 144 Bits (= 24 chars), 256 bits are
considered to be safe beyond 2030 [4]. To keep the URLs short, we can add
additional characters to the alphabet such as emojis (up to 1874 characters).

4.3 Messaging

The problem in messaging differs from the one of documents in that there is
no seed to derive keys from. However, all users can pin algorithms and public
encryption and verification on their profile page. A sender then automatically
looks up these values and encrypts the message with the user’s preferred
parameters.

An unavoidable problem is that user’s that did not log in for a long time
cannot update their keys and algorithms. The only way to counteract leaking
sensitive data over such insecure channels is to completely stop using these
algorithms and thus stop messaging these users.

Another problem that already exists in the current version of CryptPad,
but that is further accentuated: the profile pages are not cryptographically
secured and could be spoofed.! A mechanism such as Signal’s safety numbers
can help to prevent against this.

'"Note that this requires an active server-side attacker.

4.4 Teams

In contrast to documents, teams have a clear set of users that should be
directly informed about changes of cryptographic algorithms. We can take
advantage out of this and let team administrators change the encryption
algorithm and distribute the new keys to all other members according to
their role.

References

[1] D. J. Bernstein, B. van Gastel, W. Janssen, T. Lange, P. Schwabe, and
S. Smetsers, “TweetNaCl: A Crypto Library in 100 Tweets,” in Progress
in Cryptology - LATINCRYPT, 2014.

[2] D. Chestnykhm, D. Mandiri, and AndSDev, Tweetnacl.js, 2016-. [On-
line]. Available: https://github.com/dchest/tweetnacl-js.

[3] T.M. Fernandez-Carameés and P. Fraga-Lamas, “Towards post-quantum
blockchain: A review on blockchain cryptography resistant to quantum
computing attacks,” IEEE Access, 2020.

[4] D. Giry, Cryptographic Key Length Recommendation, 2020. [Online].
Available: https://www.keylength.com/en/compare/.

https://github.com/dchest/tweetnacl-js
https://www.keylength.com/en/compare/

	Introduction
	Inventory of cryptographic primitives
	Criteria for updating cryptography primitives
	Strategies
	Login Block
	Documents
	Messaging
	Teams

