
Cryptographic Libraries for CryptPad

Theo von Arx

March 14, 2023

Abstract

Changing the cryptographic primitives in CryptPad is complex and
requires a lot of work to maintain backwards compatibility. For this
reason, a possibly new cryptography library has to be chosen carefully.

Since its beginning, CryptPad has used the TweetNaCl-JS library
to perform cryptographic operations. We re-evaluate it in terms of
security and performance. We furthermore compare it against other
popular libraries/APIs such as Libsodium.js and the Web Crypto API.

While NaCl is still considered to be secure and there are no known
attacks, it lacks performance and native support on current browsers.
Sodium provides more �exibility in terms of available algorithms (which
are not necessarily desired for CryptPad). SubtleCrypto provides highly
performant primitives, which di�er from CryptPad's used algorithms.
The performance gain is most-likely not big enough to justify the work-
load on adapting these algorithms immediately, but only when a bigger
refactoring happens anyway.

Contents

1 Notation 2

2 Problem statement 2

3 Libraries 3

3.1 Tweet-NaCl . 3
3.2 LibSodium . 3
3.3 Web Crypto API . 4

4 Discarded Libraries 4

4.1 Stanford Javascript Crypto Library 4
4.2 CryptoJS . 4

5 Performance Comparison 4

6 Conclusion 6

1

1 Notation

We �rst give informal reminders about security notions required for Crypt-
Pad:

� INT-CTXT (Ciphertext Integrity): It is computationally infeasible
to produce a decryptable ciphertext that has not previously been pro-
duced by the sender, whether or not the underlying plaintext is �new�.

� IND-CPA (Indistinguishability of Chosen Plaintext Attack): No ad-
versary, given an encryption of a message randomly chosen from a
two-element message space determined by the adversary, can identify
the message choice with probability signi�cantly better than that of
random guessing.

� SUF-CMA (Strong Unforgeabililty against Chosen Message Attack):
No adversary can create a new signature for an existing message

� Pre-Image Resistance: For essentially all pre-speci�ed outputs, it is
computationally infeasible to �nd any input that hashes to that output.

� Collision Resistance: It is hard to �nd two di�erent inputs that
hash to the same output.

2 Problem statement

In short, the questions are: If we deploy a new version of CrytPad's encryp-

tion schemes, should we use another library? And which?

More speci�cally, the following cryptographic functions are required:

� Key derivation function (KDF) that is brute-force resistant (and thus
memory and time intense), and that provides good entropy for low-
entropy inputs.

� Authenticated symmetric encryption

� IND-CPA asymmetric encryption

� Asymmetric signatures that is resistant to selective forgery in known-
message attacks and SUF-CMA

� Hashes that are pre-image resistant and collision resistant.

Further requirements are that the algorithms should be distributed in a
maintained, free JavaScript library, fast loadable and compatible with Fire-
fox, Chrome and Safari. Except for the KDF, all functions should execute
quickly.

2

3 Libraries

Table 1: Provided algorithms by various libraries. The Web Crypto API is
implemented di�erently for every browser.

Library Audit Last Update Algorithms

TweetNaCl-JS 2017 06/2022 X25519-XSalsa20-Poly1305,
XSalsa20-Poly1305,
Ed25519, SHA-512

libsodium.js 2017 01/2023 XChaCha20-Poly1305
XSalsa20-Poly1305,
X25519-XSalsa20-Poly1305,
Ed25519, Ed25519ph
Blake2b, Argon2, Scrypt

Web Crypto API * * RSA-OAEP,
AES-CBC, AES-GCM
SHA-256, SHA-384, SHA-512
ECDH, HKDF, PBKDF2

3.1 Tweet-NaCl

TweetNaCl-JS is the library that is currently in use for CryptPad. The
algorithms have been described by Bernstein et al. in 2014. The library [2]
is written and maintained by Dmitry Chestnykh, is licensed under the GPL-
compatible Unlicense and was last audit by Cure53 in 2017.

The provided algorithms can be seen in Table 1. They match all the
requirements and are considered to be secure. While there have been some
practical collision attacks against truncated SHA-512 [3], SHA-512 is never-
theless listed by NIST [4].

To sum up, Tweet-NaCl is considered to be secure and to meet Crypt-
Pad's requirements. Hence, the only reason to change it would be perfor-
mance or quantum-resistance.

3.2 LibSodium

Libsodium �is a portable, cross-compilable, [...] fork of NaCl, with a compat-
ible API� [5]. The library was last audited Private Internet Access in 2017,
is licensed under the GPL-compatible ISC License and provides a library
compiled to WebAssembly [6].

Libsodium provides a superset of the algorithms implemented by TweetNaCl-
JS (c.f. Table 1). The library thus o�ers much more freedom allowing a
speci�c choice of algorithms as well as generic interfaces for which the un-
derlying algorithms can be updated. However, this freedom is not necessarily

3

desirable for CryptPad: since ciphertexts are stored permanently, the algo-
rithms cannot be easily exchanged. A newer version could modify the default
behaviour and therefore break existing documents.

3.3 Web Crypto API

The Web Crypto API [7] is a standardized JavaScript API supported by cur-
rent versions of all major browsers (Firefox, Chrome, Safari). SubtleCrypto,
which is part of the Web Crypto API, provides interfaces for symmetric and
asymmetric encryption, signing, and hashing (c.f. Table 1). The API also
provides a lot of �exibility in terms of choosable algorithms. This might be
tricky, since, e.g., AES-CBC does not provide authentication, but could be
used in combination with signatures.

The main advantage of the Web Crypto API is the native support by
browsers. Not only does this eliminate any loading time of library code, but
also gives access to hardware-optimized functions.

However, all functions are implemented asynchronously and therefore
can only be called from within async functions. CryptPad currently calls all
functions from within synchronous functions. Therefore this library is not a
drop-in replacement, not even for identical functions such as Web Crypto's
SHA-512 and TweetNaCl-JS' SHA-512.

4 Discarded Libraries

4.1 Stanford Javascript Crypto Library

While this library seems to be quite popular and is written by renowned
experts, it does no longer seem to be maintained: the last commit was from
July 2019 and the last release from November 2018 [8]. Furthermore, the
library provides only low-level functions.

4.2 CryptoJS

This library is also very popular [9] and has seen its last commit in Septem-
ber 2021. It provides AES-256 in several modes (among which are CBC,
CTR, and ECB), but not in GCM mode. Hence, there is no authenticated
encryption. Furthermore, the library does not provide any digital signatures.

5 Performance Comparison

Figure 1 shows the performance of the di�erent libraries mentioned above
on Firefox, Chromium, and Webkit. The measurements where done using
Playwright on a Lenovo ThinkPad X1 Carbon 5th Generation (Intel® Core�
i5-7200U CPU @ 2.50GHz Ö 4), the actual results might therefore vary

4

0

50

t S
y
m

E
n
c

(m
s)

Firefox Chromium Webkit

0

50

t S
y
m

D
e
c

(m
s)

0

100

t S
ig

n

(m
s)

0

50

t V
e
r
if

y

(m
s)

0.0 0.5 1.0

Size (MB)

0

50

t H
a
s
h

(m
s)

0.0 0.5 1.0

Size (MB)

0.0 0.5 1.0

Size (MB)

Performance of Di�erent Crypto Libraries on Various Browsers

TweetNaCl-JS Libsodium.js Web Crypto APITweetNaCl-JS Libsodium.js Web Crypto APITweetNaCl-JS Libsodium.js Web Crypto API

Figure 1: Web Crypto API outperforms the other libraries in the vast ma-
jority of scenarios (lower is better).

for di�erent platforms. Nevertheless, the �gure gives a raw indication to
compare the performance.

For better visibility, we only show the default Libsodium functions, which
are XSalsa20-Poly1305, Ed25519, and Blake2b. Similarly, we show only
AES-GCM, RSA-PSS, and SHA-512 for the Web Crypto API.

When observing Fig. 1, we see that almost all functions run slower on
Firefox. Especially Libsodium performs really poorly on Firefox compared
to its performance on other browsers.

For symmetric encryption, TweetNaCl-JS and Libsodium.js are the slow-
est libraries with a runtime of up to 60 ms. The AES-GCM of the Web
Crypto API performs much better and nearly independent of the input size.
It is up to 19 times faster than NaCl (when decrypting 1MB on webkit).

For asymmetric encryption, TweetNaCl-JS performs worst while Lib-
sodium.js and Web Crypto API perform about similar. The �gure suggests
that Webkit does have a bad support for RSA-PSS veri�cation.

For hashing, the Web Crypto API function also outperforms the other

5

two. Its running time is (especially compared to the one of TweetNaCl-
JS) nearly independent of the input size. While Libsodium.js shows a good
performance on Chromium and Webkit, its performance on Firefox is even
worse than the one of TweetNaCl-JS.

6 Conclusion

Since TweetNaCl-JS still ful�lls the security requirements, and there are
no post-quantum safe libraries yet, the only reason to replace it would be
performance. In this point, the Web Crypto API is the clear winner. How-
ever, drawbacks are the increased �exibility as well as the requirement of
asynchronous caller functions. While the �rst can be mitigated by writing
proper wrappers, the second can only be addressed during a major rewrite
of CryptPad's cryptography code and all its caller function. Rewriting them
to be asynchronous gives room for potential more optimizations and might
therefore be seen as an opportunity.

References

[1] D. J. Bernstein, B. van Gastel, W. Janssen, T. Lange, P. Schwabe, and
S. Smetsers, �TweetNaCl: A Crypto Library in 100 Tweets,� in Progress

in Cryptology - LATINCRYPT, 2014.

[2] D. Chestnykhm, D. Mandiri, and AndSDev, Tweetnacl.js, 2016-. [On-
line]. Available: https://github.com/dchest/tweetnacl-js.

[3] C. Dobraunig, M. Eichlseder, and F. Mendel, �Analysis of SHA-512/224
and SHA-512/256,� in ASIACRYPT 2015, 2015.

[4] M. Dworkin, Hash Functions, National Institute of Standards And Tech-
nology, 2022. [Online]. Available: https://csrc.nist.gov/projects
/hash-functions.

[5] F. Denis, Libsodium, 2013-. [Online]. Available: https://github.com
/jedisct1/libsodium.

[6] A. Ben Mrad, F. Denis, and R. Lester, Libsodium.js, 2015 -. [Online].
Available: https://github.com/jedisct1/libsodium.js.

[7] D. Huigen, M. Watson, and R. Sleevi, �Web Cryptography API,� World
Wide Web Consortium (W3C), Tech. Rep., 2022. [Online]. Available:
https://w3c.github.io/webcrypto/.

[8] E. Stark, M. Hamburg, and D. Boneh, Stanford Javascript Crypto Li-

brary, 2015-. [Online]. Available: https://github.com/bitwiseshiftl
eft/sjcl/issues/253.

[9] J. Mott and E. Vosberg, CryptoJS, 2009-.

6

https://github.com/dchest/tweetnacl-js
https://csrc.nist.gov/projects/hash-functions
https://csrc.nist.gov/projects/hash-functions
https://github.com/jedisct1/libsodium
https://github.com/jedisct1/libsodium
https://github.com/jedisct1/libsodium.js
https://w3c.github.io/webcrypto/
https://github.com/bitwiseshiftleft/sjcl/issues/253
https://github.com/bitwiseshiftleft/sjcl/issues/253

	Notation
	Problem statement
	Libraries
	Tweet-NaCl
	LibSodium
	Web Crypto API

	Discarded Libraries
	Stanford Javascript Crypto Library
	CryptoJS

	Performance Comparison
	Conclusion

